
Lovelytics: Multi-Agent Approach to LLM Task
Automation for Business Users

Alvina Yang
University of Toronto

alvina.yang@mail.utoronto.ca

Stephanie Lu
University of Toronto

steph.lu@mail.utoronto.ca

Julien Liang
University of Waterloo
jh2liang@uwaterloo.ca

Mateo Arcos
University of Toronto

mateo.arcos@mail.utoronto.ca

Zachary Tang
University of Toronto

zach.tang@mail.utoronto.ca

Jeff Lu
University of Toronto

jefff.lu@mail.utoronto.ca

Hannah Ye
University of Toronto

hannahh.ye@mail.utoronto.ca

Benson Yan
University of Waterloo
b58yan@uwaterloo.ca

Sina Fallah Ardizi
New York University

sinafallah98@gmail.com

Amr Alomari
University of Toronto

amr.alomari@mail.utoronto.ca

Jeremy Qu
University of Toronto

jeremy.qu@mail.utoronto.ca

Abstract—This paper addresses the challenge of automating
business tasks using Large Language Models (LLMs) by focus-
ing on two key aspects: generating high-quality prompts from
unclear user input and executing tasks in a modular and scalable
way. The system proposed combines DSPy (Declarative Self-
Improving Programs)-driven prompt generation, which refines
prompts based on feedback and task context, with a multia-
gent execution approach [1]. Unlike common industry practices,
this system reduces manual effort by automating both prompt
creation and task execution. The goal is to make AI-powered
task automation accessible to non-technical users, allowing them
to adopt LLMs into their daily workflow without the need for
specialized knowledge. By democratizing task automation, the
system opens up new possibilities for more efficient workflows
across organizations.

I. INTRODUCTION

Rapid adoption of artificial intelligence in business opera-
tions has fueled the demand for automating complex work-
flows using LLMs. Organizations increasingly rely on LLMs
for document processing, customer service, and data analysis,
seeking improvements in efficiency and scalability. However,
LLM effectiveness depends on prompt quality, and poorly
structured prompts often lead to ambiguous, incomplete, or
misaligned outputs. This presents a significant barrier to this
form of automation, particularly for non-technical users unfa-
miliar with prompt engineering.

This paper introduces a DSPy-driven framework for struc-
tured prompt generation, enabling users to convert vague au-
tomation requests into well-formed, context-aware instructions
that improve LLM performance. Additionally, we develop a
multi-agent task execution system that breaks down workflows
into modular, interdependent steps, improving reliability and
adaptability. Hosted on Lovelytics’ Databricks Azure tenant,
this system ensures secure, scalable automation with direct
access to enterprise datasets. As a Databricks partner, Love-
lytics enables seamless integration with enterprise workflows

by allowing secure data retrieval and processing directly from
the Databricks File System (DBFS).

A. Motivation

Despite advancements in AI, prompt engineering remains
a major challenge, especially for nontechnical users. Vague
instructions yield unreliable responses, missing context re-
duces accuracy, and multistep tasks often result in logical
inconsistencies. These issues prevent organizations from fully
leveraging LLMs for automation. Existing solutions, such
as manually crafting prompts and heuristics, offer partial
improvements but struggle with generalization and structured
execution.

B. Problem Definition

This paper addresses the dual challenge of:
1) Generating structured high-quality prompts from am-

biguous user input
2) Executing complex business automation tasks in a mod-

ular and scalable manner
To solve these challenges, we introduce a system that

combines:
• DSPy-driven prompt generation, which dynamically re-

fines prompts based on iterative feedback and task con-
straints, resulting in more effective instructions for LLMs.

• Multi-agent task execution, where specialized agents
manage different workflow stages in parallel.

Unlike traditional prompt engineering methods that rely on
manual refinement, our approach automates prompt optimiza-
tion while managing multi-agent execution, minimizing human
intervention, and increasing task reliability.

C. Limits of LLM Automation

The Occupational Information Network (O*NET) is a com-
prehensive online database of U.S. occupation information,
maintained by the Department of Labor.



O*NET assists in prompt optimization by providing:
• A detailed breakdown of jobs into specific tasks and

subtasks.
• Industry-specific terminology, responsibilities, and skill

requirements.
• Information on job-specific technologies, skills, and tools.
Users interact with the O*NET database by entering their

job title, allowing us to retrieve and suggest job-related tasks
for automation while also gathering job-specific context to
better understand their role. The automatability of a task by
an LLM depends on its structure, complexity, and input/output
requirements. Highly structured, rule-based, repetitive tasks,
as well as those with a definitive correct answer, are gen-
erally automatable. In contrast, tasks that require real-world
interactions, deep reasoning, or creativity are less suitable
for automation. Table I below highlights key features of
automatable tasks.

TABLE I
FEATURES OF TASKS AUTOMATABLE BY LLMS

Automatable by an LLM Not Automatable by an LLM
Text-based and well-defined in-
put/output

Real-time decision-making

Pattern recognition, generalization,
and context-based reasoning

Highly specialized tasks

Tolerance for imperfection Multimodal reasoning with real-
world interaction

II. METHODOLOGY

The DSPy-driven prompt engineering component focuses
on refining vague user requests into structured ’superprompts’
that provide the model with clear instructions, contextual
information, and defined constraints. These superprompts im-
prove task accuracy by integrating external knowledge and
breaking down complex tasks into manageable components.
The multi-agent execution system then takes these structured
prompts and efficiently executes them by dividing tasks into
subtasks and assigning them to specialized agents. Together,
these components ensure a scalable, context-aware approach
to automating business processes using LLMs.

A. DSPy-Driven Prompt Engineering

DSPy is a framework for optimizing prompts for LLMs
[2]. It provides an abstraction layer which allows developers
to define tasks declaratively while automatically fine-tuning
the prompts and reasoning strategies using data-driven opti-
mization.

Our approach uses DSPy to transform vague user requests
into structured ’superprompts’ that provide the LLM with
clear instructions and relevant context. Initial user prompts
undergo evaluation to identify their suitability for specific task
types, such as writing or reviewing. Superprompts integrate
external resources such as PDFs and domain-specific data
to enhance accuracy. Utilizing chain-of-thought reasoning,

the DSPy implementation systematically leverages four key
components:

1) Context from files, which tailors responses based on
user-provided documents

2) Domain-specific context, aligning outputs with best
practices

3) Task considerations, defining constraints and dependen-
cies

4) Task subtasks, breaking down automation into structured
steps

The refinement process begins by defining signatures, spec-
ifying task inputs and outputs. DSPy then generates candidate
prompts and evaluates their effectiveness against predefined
criteria. Feedback-based optimization ensures iterative im-
provements by incorporating high-quality prompt samples for
training. The final optimized superprompts are processed by
the multi-agent system, which involves feeding them into
ChatGPT and evaluating performance.

B. Multi-Agent System for Task Execution

The multi-agent system (see Fig. 1) is responsible for
executing tasks derived from DSPy-generated prompts. It does
so by breaking workflows into structured subtasks handled
by specialized agents. The system processes three key inputs:
(1) the processed superprompt from DSPy, (2) instructional
files, which contain instructions and important information,
and (3) supplementary files, which provide useful contextual
information via RAG-based retrieval.

The workflow initializes when the Planner Agent analyzes
the ‘superprompt’ and creates the Task Plan, which divides
the overall task into individual subtasks with execution steps,
displaying the information on the frontend. The user can
choose to modify the Task Plan by adding, removing, or
adjusting subtasks in an interactive refinement loop before
execution begins. Each subtask is assigned to an Executor
Agent, which processes the instructional files and retrieves
supplementary data to generate an output. These agents operate
in parallel for efficiency. Once all subtasks are completed, the
Merger Agent compiles them into a coherent final result. The
Verification Agent then evaluates this output against predefined
criteria. If it meets the required standards, it is finalized;
otherwise, the process repeats up to a user-defined retry limit
to refine the results.

In the second iteration of our design, we introduced an
alternative approach: instead of iterative retries, the system
runs five parallel executions of the full pipeline. A Selector
Agent then evaluates and selects the best overall output,
reducing computational overhead while improving reliability.

III. EVALUATION METHODS

We use two main approaches to evaluate the quality of
our system: human evaluation and GPT-We use two main
approaches to evaluate the quality of our system: human eval-
uation and GPT-based benchmarking. Each method focuses
on different aspects of the generated output to provide a well-
rounded understanding of the system’s performance.



Fig. 1. Multi-agent system architecture

A. Human Evaluation

Human evaluation focuses on straightforward, objective
criteria:

1) Word count: The total number of words in the output,
averaged across multiple responses.

2) Output format: Checks whether the generated content
matches the requested structure.

3) Instruction adherence: Evaluates whether the interme-
diate and final outputs follow the instructions provided
in the task.

These criteria ensure that the system meets basic expec-
tations, producing content in the correct form and following
the given instructions. LangSmith was used to support human
evaluation.

B. LLM-Based Benchmarking

LLM-based benchmarking focuses on a more detailed eval-
uation of content quality. In this method, advanced LLM
agents, referred to as ’council members’, are used to assess the
generated outputs. These agents evaluate the responses based
on an initial set of metrics. After reviewing the prompt and any
provided instructional files, each ’council member’ suggests
1-3 additional criteria that they believe are important for the
evaluation. These new metrics are then added to the final list.

The final score for each output is calculated by averaging
the scores from all ’council members’. This approach enables
a more comprehensive evaluation of the content, considering
aspects such as relevance, clarity, and depth.

C. Relevant Work

The approach described above draws inspiration from two
primary sources. First, the concept of using multiple LLM
agents as a ’council’ is discussed in the paper Language Model
Council: Democratically Benchmarking Foundation Models
on Highly Subjective Tasks [3]. This paper demonstrates
how collaborative LLM benchmarking can provide a more
comprehensive evaluation for writing-based tasks. The idea
of using multiple LLM agents to collaboratively generate
custom evaluation criteria and assess outputs was particularly
appealing as it minimizes bias and contributes to a more
balanced evaluation.

Second, the methodology outlined in the GitHub repository
[4], which provides guidelines for evaluating writing quality,
also influenced the approach. This repository emphasizes the
use of LLMs to define evaluation metrics for writing tasks,
further guiding the development of the benchmarking process.

D. Tasks for Benchmarking

For the benchmarking, the task automation system was
tested using three different tasks:

• Environmental History of Computing Essay: This task
includes both an instructional file and a supplementary
file, providing context for generating the essay.

• Literary Research Writing: This task includes an in-
structional file and several different books and papers on
a literary work, with information from competing sources
that needs to be referenced in conjunction to each other.

• Fire Safety Protocols: Unlike the other tasks, this one
lacks both instructional and supplementary files, making
it more open-ended and testing the system’s ability to
generate relevant content autonomously.

E. Experimental Setup

To evaluate the performance of different systems against the
proposed multiagent system, benchmarking was conducted on
the output from the following models:

• GPT-4o-mini with direct prompting
• GPT-4o with direct prompting
• GPT-o3-mini-high with direct prompting
• The proposed system with GPT-4o-mini in the backend
Each model was tested three times to ensure consistent and

reliable results.

IV. RESULTS

The experimental results comparing the outputs of various
models against our system are presented in the appendices.
In general, our system demonstrates significantly superior
performance compared to GPT-4o-mini and GPT-4o. It shows
slight advantage over GPT-o3-mini-high, while running at a



fraction of the cost. We will focus our analysis on the first
task: an essay on the Environmental History of Computing.

The execution of the Environmental History of Computing
Essay task shows significant differences in model performance.
The task involved writing a 2,000-word essay with instruc-
tional and contextual files for guidance.

The 4o-mini model generated only 420 words in bullet point
format, failing to meet word count and structural requirements,
with a benchmark score of 52.50. The 4o model performed
better, generating 828 words in paragraph form, but still lacked
the clear thesis-claim-evidence structure of an essay, earning
a score of 78.33. The o3 model, a reasoning-based model,
produced 1,704 words with paragraphs and met the structural
requirements, earning a benchmark score of 82.78. However,
while this model exhibits better performance, it is nearly seven
times more expensive to run compared to our system.

The proposed system, which uses 4o-mini, produced 1,979
words in well-structured paragraphs and adhered to all instruc-
tions. With a benchmark score of 85.06, it outperformed all
other models, showing that even smaller models can achieve
high-quality outputs when optimized through task automation.

The difference in performance between directly prompting
o3-mini-high versus the other models is primarily due to the
reasoning strength of o3, which excels in content coherence.
However, the model still struggles with instruction adherence.
In contrast, our system leverages DSPy for prompt engineering
and LangGraph for parallel execution and subtask decompo-
sition, allowing 4o-mini to generate structured content with
better instruction adherence.

A. Discussion

The primary goal of this work is to optimize the process
of prompt creation and task automation. The DSPy-driven
prompt engineering approach effectively converts vague task
automation requests into structured superprompts, which in
turn enhances the performance of LLMs.

Experimental results demonstrate that the proposed system
outperforms baseline models across several evaluation metrics,
including human evaluation and LLM-based benchmarking.
By leveraging LangChain, the system also supports the parallel
execution of subtasks, which significantly reduces latency,
allowing for faster processing times and improving the overall
efficiency of the task automation process.

V. CONCLUSION

This work presents a system that enhances task automa-
tion by utilizing a multiagent architecture in combimation
with DSPy to transform vague task automation requests
into structured superprompts, optimizing task execution. Ex-
perimentation shows that the proposed system outperforms
baseline models across multiple evaluation metrics, including
human and LLM-based assessments. The system’s modular
design, supported by LangChain, enables parallel automation
of subtasks, enhancing both efficiency and the overall user
experience.

In practice, DSPy lowers the barrier for non-technical users
to automate tasks, which promotes a broader adoption of AI-
driven workflows. By leveraging Databricks and Azure, the
proposed system also ensures secure data access and smooth
integration into existing enterprise ecosystems.

A. Future Work

Future work will focus on further improving the capabilities
of the system, refining existing workflows and user experience,
and extending its functionality in a few key areas:

1) Improvement Pipeline: One potential direction is to
develop a system that focuses on improving existing
work rather than completing new tasks. This could
involve creating a pipeline that takes a current workflow
as input, uses agents to analyze and refine it, and then
outputs an improved version. This approach would en-
able the system to iteratively improve tasks and optimize
existing processes over time, making it more adaptable
to changing requirements.

2) Effective Referencing: Another area for future develop-
ment is enhancing the system’s ability to reference ex-
amples for task output generation, including tone, struc-
ture, and content formatting. By comparing task outputs
with high-quality examples, the system could improve its
ability to generate outputs that align more closely with
user expectations. This would involve developing more
advanced algorithms for contextual understanding and
comparison, allowing for more effective use of external
references during task execution.

These areas of improvement will further increase the flex-
ibility and performance of the system, ultimately enabling
broader application in real-world business automation scenar-
ios.

REFERENCES

[1] A. Yang, S. Lu, J. Liang, M. Arcos, Z. Tang, J. Lu, H. Ye, B. Yang,
S. F. Ardizi, and A. Alomari, “Project Git Repository,” 2024. [Online].
Available: https://github.com/alvina-yang/Lovelytics

[2] O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam,
S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller,
M. Zaharia, and C. Potts, “DSPy: Compiling Declarative Language
Model Calls into Self-Improving Pipelines,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.03714

[3] J. Zhao, F. M. P. del Arco, B. Genchel, and A. C. Curry,
“Language Model Council: Democratically benchmarking Foundation
models on Highly Subjective Tasks,” 2025. [Online]. Available:
https://arxiv.org/abs/2406.08598

[4] L. Mazur and C. Norton, “LLM Creative Story-Writing Benchmark,”
2025. [Online]. Available: https://github.com/lechmazur/writing

https://github.com/alvina-yang/Lovelytics
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2406.08598
https://github.com/lechmazur/writing


APPENDIX A

TABLE A1
BENCHMARK TASK #1 - HUMAN EVALUATION

Model Word Count Output Format Instruction Adherance
4o-mini 420 Bullet Points No

4o 828 Paragraphs Yes

o3-mini-high 1704 Paragraphs Yes

proposed 1979 Paragraphs Yes

TABLE A2
BENCHMARK TASK #1 - LLM-BASED BENCHMARKING SCORES

4o-mini 4o o3-mini-high proposed

50

60

70

80

52.5

78.33

82.78
85.06

Model

Sc
or

e



APPENDIX B

TABLE B1
BENCHMARK TASK #2 - HUMAN EVALUATION

Model Word Count Output Format Instruction Adherance
4o-mini 533 Bullet Points No

4o 917 Bullet Points No

o3-mini-high 2154 Paragraphs Yes

proposed 2261 Paragraphs Yes

TABLE B2
BENCHMARK TASK #2 - LLM-BASED BENCHMARKING SCORES

4o-mini 4o o3-mini-high proposed

50

60

70

80

90

45.25

73.67

84.33

88.67

Model

Sc
or

e



APPENDIX C

TABLE C1
BENCHMARK TASK #3 - HUMAN EVALUATION

Model Word Count Output Format Instruction Adherance
4o-mini 651 Bullet Points Yes

4o 354 Bullet Points Yes

o3-mini-high 777 Bullet Points Yes

proposed 2896 Paragraphs Yes

TABLE C2
BENCHMARK TASK #3 - LLM-BASED BENCHMARKING SCORES

4o-mini 4o o3-mini-high proposed

70

75

80

70.67

73.67

77

83.17

Model

Sc
or

e


	Introduction
	Motivation
	Problem Definition
	Limits of LLM Automation

	Methodology
	DSPy-Driven Prompt Engineering
	Multi-Agent System for Task Execution

	Evaluation Methods
	Human Evaluation
	LLM-Based Benchmarking
	Relevant Work
	Tasks for Benchmarking
	Experimental Setup

	Results
	Discussion

	Conclusion
	Future Work

	References

